这篇“Druid核心源码分析DruidDataSource”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Druid核心源码分析DruidDataSource”文章吧。
配置读取
druid连接池支持的所有连接参数可在类com.alibaba.druid.pool.DruidDataSourceFactory
中查看。
配置读取代码:
public void configFromPropety(Properties properties) { //这方法太长,自己看源码去吧,就是读读属性。。。。 }
整体代码比较简单,就是把配置内容,读取到dataSource。
连接池初始化
首先是简单的判断,加锁:
if (inited) { //已经被初始化好了,直接return return; } // bug fixed for dead lock, for issue #2980 DruidDriver.getInstance(); /**控制创建移除连接的锁,并且通过条件去控制一个连接的生成消费**/ // public DruidAbstractDataSource(boolean lockFair){ // lock = new ReentrantLock(lockFair); // // notEmpty = lock.newCondition(); // empty = lock.newCondition(); // } final ReentrantLock lock = this.lock; try { lock.lockInterruptibly(); } catch (InterruptedException e) { throw new SQLException("interrupt", e); }
之后会更新一些JMX的监控指标:
//一些jmx监控指标 this.connectionIdSeedUpdater.addAndGet(this, delta); this.statementIdSeedUpdater.addAndGet(this, delta); this.resultSetIdSeedUpdater.addAndGet(this, delta); this.transactionIdSeedUpdater.addAndGet(this, delta);
druid的监控指标都是通过jmx实现的。
解析连接串:
if (this.jdbcUrl != null) { //解析连接串 this.jdbcUrl = this.jdbcUrl.trim(); initFromWrapDriverUrl(); }
initFromWrapDriverUrl
方法,除了从jdbc url中解析出连接和驱动信息,后面还把filters的名字,解析成了对应的filter类。
private void initFromWrapDriverUrl() throws SQLException { if (!jdbcUrl.startsWith(DruidDriver.DEFAULT_PREFIX)) { return; } DataSourceProxyConfig config = DruidDriver.parseConfig(jdbcUrl, null); this.driverClass = config.getRawDriverClassName(); LOG.error("error url : '" + jdbcUrl + "', it should be : '" + config.getRawUrl() + "'"); this.jdbcUrl = config.getRawUrl(); if (this.name == null) { this.name = config.getName(); } for (Filter filter : config.getFilters()) { addFilter(filter); } }
之后在init方法里面,会进行filters的初始化:
//初始化filter 属性 for (Filter filter : filters) { filter.init(this); }
之后解析数据库类型:
if (this.dbTypeName == null || this.dbTypeName.length() == 0) { this.dbTypeName = JdbcUtils.getDbType(jdbcUrl, null); }
注意枚举值: com.alibaba.druid.DbType
,这个里面包含了目前durid连接池支持的所有数据源 类型,另外,druid还额外提供了一些驱动类,例如:
elastic_search (1 << 25), // com.alibaba.xdriver.elastic.jdbc.ElasticDriver
clickhouse还提供了负载均衡的驱动类:
com.alibaba.druid.support.clickhouse.BalancedClickhouseDriver
。
在回到init方法,之后是一堆参数解析,不再说,跳过了。 之后是通过SPI加载自定义的filter:
private void initFromSPIServiceLoader() { if (loadSpifilterSkip) { return; } if (autoFilters == null) { List<Filter> filters = new ArrayList<Filter>(); ServiceLoader<Filter> autoFilterLoader = ServiceLoader.load(Filter.class); for (Filter filter : autoFilterLoader) { AutoLoad autoLoad = filter.getClass().getAnnotation(AutoLoad.class); if (autoLoad != null && autoLoad.value()) { filters.add(filter); } } autoFilters = filters; } for (Filter filter : autoFilters) { if (LOG.isInfoEnabled()) { LOG.info("load filter from spi :" + filter.getClass().getName()); } addFilter(filter); } }
注意自定义的filter,要使用com.alibaba.druid.filter.AutoLoad
。
解析驱动:
protected void resolveDriver() throws SQLException { if (this.driver == null) { if (this.driverClass == null || this.driverClass.isEmpty()) { this.driverClass = JdbcUtils.getDriverClassName(this.jdbcUrl); } if (MockDriver.class.getName().equals(driverClass)) { driver = MockDriver.instance; } else if ("com.alibaba.druid.support.clickhouse.BalancedClickhouseDriver".equals(driverClass)) { Properties info = new Properties(); info.put("user", username); info.put("password", password); info.putAll(connectProperties); driver = new BalancedClickhouseDriver(jdbcUrl, info); } else { if (jdbcUrl == null && (driverClass == null || driverClass.length() == 0)) { throw new SQLException("url not set"); } driver = JdbcUtils.createDriver(driverClassLoader, driverClass); } } else { if (this.driverClass == null) { this.driverClass = driver.getClass().getName(); } } }
其中durid自己的mock驱动和clickhouse的负载均衡的驱动,特殊判断了下,其他走的都是class forname.
之后是exception sorter和checker的一些东西,跟主线剧情关系不大,skip.
之后是一些初始化JdbcDataSourceStat
,没啥东西。
之后是核心:
connections = new DruidConnectionHolder[maxActive]; //连接数组 evictConnections = new DruidConnectionHolder[maxActive]; //销毁的连接数组 keepAliveConnections = new DruidConnectionHolder[maxActive]; //保持活跃可用的数组
dataSource的连接,都被包装在类DruidConnectionHolder
中,之后是一个同步去初始化连接还是异步去初始化的连接,总之,是去初始化 连接的过程:
if (createScheduler != null && asyncInit) { for (int i = 0; i < initialSize; ++i) { submitCreateTask(true); } } else if (!asyncInit) { // init connections while (poolingCount < initialSize) { try { PhysicalConnectionInfo pyConnectInfo = createPhysicalConnection(); DruidConnectionHolder holder = new DruidConnectionHolder(this, pyConnectInfo); connections[poolingCount++] = holder; } catch (SQLException ex) { LOG.error("init datasource error, url: " + this.getUrl(), ex); if (initExceptionThrow) { connectError = ex; break; } else { Thread.sleep(3000); } } } if (poolingCount > 0) { poolingPeak = poolingCount; poolingPeakTime = System.currentTimeMillis(); } }
初始化的连接个数为连接串里面配置的initialSize
.
核心初始化方法com.alibaba.druid.pool.DruidAbstractDataSource#createPhysicalConnection()
,在这方法里面,会拿用户名密码,之后执行真正的获取connection:
public Connection createPhysicalConnection(String url, Properties info) throws SQLException { Connection conn; if (getProxyFilters().size() == 0) { conn = getDriver().connect(url, info); } else { conn = new FilterChainImpl(this).connection_connect(info); } createCountUpdater.incrementAndGet(this); return conn; }
注意,如果配置了filters,则所有操作,都会在操作前执行filter处理链。
public ConnectionProxy connection_connect(Properties info) throws SQLException { if (this.pos < filterSize) { return nextFilter() .connection_connect(this, info); } Driver driver = dataSource.getRawDriver(); String url = dataSource.getRawJdbcUrl(); Connection nativeConnection = driver.connect(url, info); if (nativeConnection == null) { return null; } return new ConnectionProxyImpl(dataSource, nativeConnection, info, dataSource.createConnectionId()); }
再回到主流程init方法,connections
数组初始化完成之后, 开启额外线程:
createAndLogThread(); //打印连接信息 createAndStartCreatorThread(); //创建连接线程 createAndStartDestroyThread(); //销毁连接线程
先看注释,具体里面的内容后面单独拉出来讲。
之后:
initedLatch.await(); //初始化 latch -1 init = true; //标记已经初始化完成 initedTime = new Date(); //时间 registerMbean(); //为datasource 注册jmx监控指标
最后的最后,如果配置了keepAlive:
if (keepAlive) { // async fill to minIdle if (createScheduler != null) { for (int i = 0; i < minIdle; ++i) { submitCreateTask(true); } } else { this.emptySignal(); } }
这时候,会根据配置的活跃连接数minIdle
,去给datasource的连接,做个保持活跃连接个数,具体后面再说。
连接池使用的核心逻辑
首先,使用数组作为连接的容器,对于真实连接的加入和移除,使用lock就行同步,另外,在加入和移除连接时候,对比生产消费模型,通过lock上的条件,来通知是否可以获取或者加入连接。
public DruidAbstractDataSource(boolean lockFair){ lock = new ReentrantLock(lockFair); notEmpty = lock.newCondition(); //非空,有连接 empty = lock.newCondition(); //空的 }
另外,默认的fairlock为false
public DruidDataSource(){ this(false); } public DruidDataSource(boolean fairLock){ super(fairLock); configFromPropety(System.getProperties()); }
创建连接
在线程com.alibaba.druid.pool.DruidDataSource.CreateConnectionThread
中:
if (emptyWait) { // 必须存在线程等待,才创建连接 if (poolingCount >= notEmptyWaitThreadCount // && (!(keepAlive && activeCount + poolingCount < minIdle)) && !isFailContinuous() ) { empty.await(); } // 防止创建超过maxActive数量的连接 if (activeCount + poolingCount >= maxActive) { empty.await(); continue; } }
必须存在线程等待获取连接时候,才能创建连接,并且要保持总的连接数,不能超过配置的最大连接。
创建完连接之后,执行 notEmpty.signalAll();
通知消费者。
获取连接
外层代码:
@Override public DruidPooledConnection getConnection() throws SQLException { return getConnection(maxWait); } public DruidPooledConnection getConnection(long maxWaitMillis) throws SQLException { init(); if (filters.size() > 0) { FilterChainImpl filterChain = new FilterChainImpl(this); return filterChain.dataSource_connect(this, maxWaitMillis); } else { return getConnectionDirect(maxWaitMillis); } }
忽略掉filter chain,其实最后执行的还是com.alibaba.druid.pool.DruidDataSource#getConnectionDirect
:
方法内部:
poolableConnection = getConnectionInternal(maxWaitMillis);
-
1 , 连接不足,需要直接去创建新的,跟我们初始化一样
-
2,从connections里面拿
if (maxWait > 0) { holder = pollLast(nanos); } else { holder = takeLast(); }
其中,maxWait默认为-1,配置在init里面:
String property = properties.getProperty("druid.maxWait"); if (property != null && property.length() > 0) { try { int value = Integer.parseInt(property); this.setMaxWait(value); } catch (NumberFormatException e) { LOG.error("illegal property 'druid.maxWait'", e); } }
这个用于配置拿连接时候,是否在这个时间上进行等待,默认是否,即一直等到拿到连接为止。
直接看下阻塞拿的过程:
DruidConnectionHolder takeLast() throws InterruptedException, SQLException { try { //没连接了 while (poolingCount == 0) { //暗示下创建线程没连接了 emptySignal(); // send signal to CreateThread create connection if (failFast && isFailContinuous()) { throw new DataSourceNotAvailableException(createError); } notEmptyWaitThreadCount++; if (notEmptyWaitThreadCount > notEmptyWaitThreadPeak) { notEmptyWaitThreadPeak = notEmptyWaitThreadCount; } try { //傻等着创建或者回收,能给整出来点儿连接 notEmpty.await(); // signal by recycle or creator } finally { notEmptyWaitThreadCount--; } notEmptyWaitCount++; if (!enable) { connectErrorCountUpdater.incrementAndGet(this); if (disableException != null) { throw disableException; } throw new DataSourceDisableException(); } } } catch (InterruptedException ie) { notEmpty.signal(); // propagate to non-interrupted thread notEmptySignalCount++; throw ie; } //拿数组的最后一个连接 decrementPoolingCount(); DruidConnectionHolder last = connections[poolingCount]; connections[poolingCount] = null; return last; }
连接回收
protected void createAndStartDestroyThread() { destroyTask = new DestroyTask(); //自定义配置销毁 ,适用于连接数非常多的 情况 if (destroyScheduler != null) { long period = timeBetweenEvictionRunsMillis; if (period <= 0) { period = 1000; } destroySchedulerFuture = destroyScheduler.scheduleAtFixedRate(destroyTask, period, period, TimeUnit.MILLISECONDS); initedLatch.countDown(); return; } String threadName = "Druid-ConnectionPool-Destroy-" + System.identityHashCode(this); //单线程销毁 destroyConnectionThread = new DestroyConnectionThread(threadName); destroyConnectionThread.start(); }
实际的销毁:
public class DestroyTask implements Runnable { public DestroyTask() { } @Override public void run() { shrink(true, keepAlive); if (isRemoveAbandoned()) { removeAbandoned(); } } }
最终 执行的还是 shrink
方法。
public void shrink(boolean checkTime, boolean keepAlive) { try { lock.lockInterruptibly(); } catch (InterruptedException e) { return; } boolean needFill = false; int evictCount = 0; int keepAliveCount = 0; int fatalErrorIncrement = fatalErrorCount - fatalErrorCountLastShrink; fatalErrorCountLastShrink = fatalErrorCount; try { if (!inited) { return; } final int checkCount = poolingCount - minIdle; //需要检测连接的数量 final long currentTimeMillis = System.currentTimeMillis(); for (int i = 0; i < poolingCount; ++i) { //检测目前connections数组中的连接 DruidConnectionHolder connection = connections[i]; if ((onFatalError || fatalErrorIncrement > 0) && (lastFatalErrorTimeMillis > connection.connectTimeMillis)) { keepAliveConnections[keepAliveCount++] = connection; continue; } if (checkTime) { //是否设置了物理连接的超时时间phyTimoutMills。假如设置了该时间, // 判断连接时间存活时间是否已经超过phyTimeoutMills,是则放入evictConnections中 if (phyTimeoutMillis > 0) { long phyConnectTimeMillis = currentTimeMillis - connection.connectTimeMillis; if (phyConnectTimeMillis > phyTimeoutMillis) { evictConnections[evictCount++] = connection; continue; } } long idleMillis = currentTimeMillis - connection.lastActiveTimeMillis;//获取连接空闲时间 //如果某条连接空闲时间小于minEvictableIdleTimeMillis,则不用继续检查剩下的连接了 if (idleMillis < minEvictableIdleTimeMillis && idleMillis < keepAliveBetweenTimeMillis ) { break; } if (idleMillis >= minEvictableIdleTimeMillis) { // check checkTime is silly code //检测检查了几个连接了 if (checkTime && i < checkCount) { //超时了 evictConnections[evictCount++] = connection; continue; } else if (idleMillis > maxEvictableIdleTimeMillis) { //超时了 evictConnections[evictCount++] = connection; continue; } } if (keepAlive && idleMillis >= keepAliveBetweenTimeMillis) { //配置了keepAlive,并且在存活时间内,放到keepAlive数组 keepAliveConnections[keepAliveCount++] = connection; } } else { //不需要检查时间的,直接移除 if (i < checkCount) { evictConnections[evictCount++] = connection; } else { break; } } } int removeCount = evictCount + keepAliveCount; //移除了几个 //由于使用connections连接时候,都是取后面的,后面 的是最新的连接,只考虑前面过期就行,所以只需要挪动前面的连接 if (removeCount > 0) { System.arraycopy(connections, removeCount, connections, 0, poolingCount - removeCount); Arrays.fill(connections, poolingCount - removeCount, poolingCount, null); poolingCount -= removeCount; } keepAliveCheckCount += keepAliveCount; if (keepAlive && poolingCount + activeCount < minIdle) { //不够核心的活跃连接时候,需要去创建啦 needFill = true; } } finally { lock.unlock(); } if (evictCount > 0) { for (int i = 0; i < evictCount; ++i) { //销毁连接 DruidConnectionHolder item = evictConnections[i]; Connection connection = item.getConnection(); JdbcUtils.close(connection); destroyCountUpdater.incrementAndGet(this); } Arrays.fill(evictConnections, null); } if (keepAliveCount > 0) { // keep order for (int i = keepAliveCount - 1; i >= 0; --i) { DruidConnectionHolder holer = keepAliveConnections[i]; Connection connection = holer.getConnection(); holer.incrementKeepAliveCheckCount(); boolean validate = false; try { this.validateConnection(connection); validate = true; } catch (Throwable error) { if (LOG.isDebugEnabled()) { LOG.debug("keepAliveErr", error); } // skip } boolean discard = !validate; //没通过validate if (validate) { //通过keep alive检查,更新时间 holer.lastKeepTimeMillis = System.currentTimeMillis(); //这里还会尝试放回connections数组 boolean putOk = put(holer, 0L, true); if (!putOk) { //没放入,标记要丢弃了 discard = true; } } if (discard) { try { connection.close(); } catch (Exception e) { // skip } lock.lock(); try { discardCount++; if (activeCount + poolingCount <= minIdle) { //发信号让创建线程去创建 emptySignal(); } } finally { lock.unlock(); } } } this.getDataSourceStat().addKeepAliveCheckCount(keepAliveCount); Arrays.fill(keepAliveConnections, null); } if (needFill) { //又要去创建了 lock.lock(); try { int fillCount = minIdle - (activeCount + poolingCount + createTaskCount); for (int i = 0; i < fillCount; ++i) { emptySignal(); } } finally { lock.unlock(); } } else if (onFatalError || fatalErrorIncrement > 0) { lock.lock(); try { emptySignal(); } finally { lock.unlock(); } } }
工具数组evictConnections
,keepAliveConnections
用完即被置空,老工具人了。
一波操作下来,完成了对connections数组的大清洗。
以上就是关于“Druid核心源码分析DruidDataSource”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注云搜网行业资讯频道。